首页 - 学术讲座 - 正文

基于事件驱动机制的随机跳变系统的稳定性分析与控制

创建时间:  2020/12/23  谢燮   浏览次数:   返回

    /dfiles/17935/portals/689/3dc666eef60c43aef4244ee5df87f18f.png学术报告


5E6F

  报告题目:基于事件驱动机制的随机跳变系统的 稳定性分析与控制

  报告专家江保平 教授(苏州科技大学)

  报告时间20201228日 18:30

  报告地点公司宝山校区东区10号楼508







个人简介:

     江保平,苏州科技大学副教授,中国海洋大学与米兰理工大学联合培养博士生。从事随机微分方程理论、随机控制理论以及滑模变结构控制理论与应用等研究。主持国家自然科学基金1项、江苏省自然科学基金1项,江苏省高校自然科学基金1项,苏州市智慧城市研究院课题1项、苏州科技大学校基金2项。获中国海洋大学优秀科技创新成果奖一等奖,中国海洋大学优秀博士论文一等奖,山东省优秀成果奖二等奖,以及期刊Journal of the Franklin InstituteISA Transactions 杰审稿人奖;已发表本领域顶级SCI论文10余篇,出版专著1部,ESI高被引论文5篇,热点论文2篇;并长期担任AutomaticaIEEE Transactions on Automatic ControlIEEE Transactions on Industrial ElectronicsIEEE Transactions on Industrial Informatics等国际期刊审稿人。

报告摘要

In many real-world systems, stochastic systems are the typical ones that can be used to model a variety of physical systems, for example, computer controlled systems, communication systems, etc. Particularly, due to the abrupt phenomena, the stochastic system is more suitably described by semi-Markov jump system (S-MJS). With respect to the intelligent control strategies, sliding mode control (SMC) was one of which that has demonstrated unique superiorities over others for the fact that the SMC models have good properties of strong robustness to nonlinear perturbations and system uncertainties. Therefore, a lot of attention has been paid to SMC from the last century to present. On the other hand, different from the past point-to-point systems, nowadays the networked control systems are achieved with the components connected through networks. Traditionally, the time-triggered control, which executed in a periodic way, may cause waste of computation, communication resources and lower efficiency in utilization of limited network resources. However, employing the event-triggered strategy allows transmission of measurements happen only when the event-triggered condition is satisfied or violated. Therefore, the event-triggered based control is becoming popular and a hot issue.

上一条:系统状态的点估计及区间估计方法

下一条:智慧城市中的几个运筹优化问题